7 research outputs found

    HDR Imaging With One-Bit Quantization

    Full text link
    Modulo sampling and dithered one-bit quantization frameworks have emerged as promising solutions to overcome the limitations of traditional analog-to-digital converters (ADCs) and sensors. Modulo sampling, with its high-resolution approach utilizing modulo ADCs, offers an unlimited dynamic range, while dithered one-bit quantization offers cost-efficiency and reduced power consumption while operating at elevated sampling rates. Our goal is to explore the synergies between these two techniques, leveraging their unique advantages, and to apply them to non-bandlimited signals within spline spaces. One noteworthy application of these signals lies in High Dynamic Range (HDR) imaging. In this paper, we expand upon the Unlimited One-Bit (UNO) sampling framework, initially conceived for bandlimited signals, to encompass non-bandlimited signals found in the context of HDR imaging. We present a novel algorithm rigorously examined for its ability to recover images from one-bit modulo samples. Additionally, we introduce a sufficient condition specifically designed for UNO sampling to perfectly recover non-bandlimited signals within spline spaces. Our numerical results vividly demonstrate the effectiveness of UNO sampling in the realm of HDR imaging.Comment: arXiv admin note: text overlap with arXiv:2308.0069

    Low-rank Matrix Sensing With Dithered One-Bit Quantization

    Full text link
    We explore the impact of coarse quantization on low-rank matrix sensing in the extreme scenario of dithered one-bit sampling, where the high-resolution measurements are compared with random time-varying threshold levels. To recover the low-rank matrix of interest from the highly-quantized collected data, we offer an enhanced randomized Kaczmarz algorithm that efficiently solves the emerging highly-overdetermined feasibility problem. Additionally, we provide theoretical guarantees in terms of the convergence and sample size requirements. Our numerical results demonstrate the effectiveness of the proposed methodology.Comment: arXiv admin note: substantial text overlap with arXiv:2308.0069

    Harnessing the Power of Sample Abundance: Theoretical Guarantees and Algorithms for Accelerated One-Bit Sensing

    Full text link
    One-bit quantization with time-varying sampling thresholds (also known as random dithering) has recently found significant utilization potential in statistical signal processing applications due to its relatively low power consumption and low implementation cost. In addition to such advantages, an attractive feature of one-bit analog-to-digital converters (ADCs) is their superior sampling rates as compared to their conventional multi-bit counterparts. This characteristic endows one-bit signal processing frameworks with what one may refer to as sample abundance. We show that sample abundance plays a pivotal role in many signal recovery and optimization problems that are formulated as (possibly non-convex) quadratic programs with linear feasibility constraints. Of particular interest to our work are low-rank matrix recovery and compressed sensing applications that take advantage of one-bit quantization. We demonstrate that the sample abundance paradigm allows for the transformation of such problems to merely linear feasibility problems by forming large-scale overdetermined linear systems -- thus removing the need for handling costly optimization constraints and objectives. To make the proposed computational cost savings achievable, we offer enhanced randomized Kaczmarz algorithms to solve these highly overdetermined feasibility problems and provide theoretical guarantees in terms of their convergence, sample size requirements, and overall performance. Several numerical results are presented to illustrate the effectiveness of the proposed methodologies.Comment: arXiv admin note: text overlap with arXiv:2301.0346

    Matrix Completion via Memoryless Scalar Quantization

    Full text link
    We delve into the impact of memoryless scalar quantization on matrix completion. We broaden our theoretical discussion to encompass the coarse quantization scenario with a dithering scheme, where the only available information for low-rank matrix recovery is few-bit low-resolution data. Our primary motivation for this research is to evaluate the recovery performance of nuclear norm minimization in handling quantized matrix problems without the use of any regularization terms such as those stemming from maximum likelihood estimation. We furnish theoretical guarantees for both scenarios: when access to dithers is available during the reconstruction process, and when we have access solely to the statistical properties of the dithers. Additionally, we conduct a comprehensive analysis of the effects of sign flips and prequantization noise on the recovery performance, particularly when the impact of sign flips is quantified using the well-known Hamming distance in the upper bound of recovery error.Comment: arXiv admin note: substantial text overlap with arXiv:2310.0322
    corecore